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Abstract—The common character of upward heat transfer in bottom-heated and internally heated fluid
layers is demonstrated. This is accomplished by comparing their heat-transfer characteristics on the basis ofa
modified Nusselt number, defined in terms of an implicit length scale, in contrast to the conventional Nusselt
number which contains the total layer depth. The implicit length scale is derived from dimensional
considerations and depends only upon parameters relevant to the thermal boundary layer adjacent to the
solid surface. The modified Nusselt number was found to have an extremely weak dependence upon the
Rayleigh number, the variation being only two-fold over a 107-fold variation of Rayleigh number. More
importantly, the heat transfer data for bottom-heated layers (i.e. Rayleigh-Bénard convection) were shown
to be almost identical to those for internally heated layers. These results suggest that factors outside of the
boundary layer, such as the method of heating, have little influence upon the heat-transfer coefficients of the
two systems. The relationship between the implicit boundary-layer length scale used herein and the critical
boundary-layer thickness used in the boundary-layer instability models of Howard and others is discussed.
Least square correlation of the combined data for both bottom and internal heating is also presented.

NOMENCLATURE Greek symbols

D,  total layer depth; B, coefficient of thermal expansion;

D*, far-field length scale; 8.,  critical boundary-layer thickness;

g, gravitational acceleration; K, heat diffusivity;

h, heat-transfer coefficient ; v, kinematic viscosity.

k, thermal conductivity;

I*, near-field length scale, equation (8); Subscripts

Nu, Nusselt number; 0, lower surface;

Nu,, Nusselt number at lower boundary; 1, upper surface;

Nu,, Nusselt number at upper boundary; m, maxima.

Nu*, modified (boundary-layer) Nusselt
number, equation (9); Superscripts

q heat flux; * near-field quantity;

qo»  heat flux at lower boundary; +, farfield quantity.

q1, heat flux at upper boundary;

Ra, Rayleigh number;

Ra,, internal Rayleigh number; 1. INTRODUCTION

Ra™, far-field Rayleigh number; RAYLEIGH-BENARD convection in a horizontal fluid

Ra;,, critical boundary-layer Rayleigh layer heated from below is the prototype for a large
number; class of problems concerning fluid flow driven by an

S, volumetric heat generation rate; unstable buoyancy force distribution. Another mem-

T,, ~maximum temperature in internally-heated  ber of this class, one which has received considerable
layer; attention in recent years, is natural convection in an

AT, temperature difference, T, — T;; internally heated fluid layer cooled from above and

AT,, temperature difference, 7,,—T,; below. In contrast to the Rayleigh-Bénard case,

AT,, temperature difference, T,,—T;; convection in an internally heated layer is confined to

AT, far-field temperature difference; the upper part of the layer within which the tempera-

AT*, near-field temperature difference. ture distribution is destabilizing, the lower part being
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relatively stagnant and stably stratified. Nevertheless,
the Rayleigh-Bénard problem and the problem of
convection induced by internal heating have certain
basic features in common, particularly with regard to
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the mechanisms governing the transfer of heat at the
upper boundary of each system. For example, if the
convection is fully turbulent, the flow in both cases is
characterized by a nearly isothermal core together
with a thin thermal boundary layer adjacent to the
upper surface. In this situation, it is reasonable to
expect that the upward heat transfer is controlled
mainly by local parameters associated with the ther-
mal boundary layer and that the method of heating is
of secondary importance. Consequently, it should be
possible to correlate the combined heat-transfer data
for bottom-heated and internally heated layers in a
manner that reveals the common physical basis of the
two turbulent convection processes. Yet, to date, there
has been no attempt to draw a quantitative com-
parison between the heat-transfer results for the two
problems. In fact, the heat-transfer data for internally
heated layers is usually presented in a form which
makes such a comparison difficult. The purpose of this
communication is to suggest a simple method of
displaying the combined data, a method based upon
an important physical characteristic shared by both
problems. In so doing, the heat-transfer correlations
for the bottom-heated and internally heated layers are
shown to be almost identical.

The emphasis throughout this work is on deducing
the common mechanisms governing upward heat
transfer in bottom-heated and internally heated layers
via the existing heat-transfer data for both problems.
Thus, the particular correlation employed here,
though physically meaningful, is not necessarily the
most appropriate for practical calculations. In special
circumstances, other correlations might be more use-
ful. In any event, it is felt that the physics of the
turbulent convection process can be best understood
by the method described below.

2. COMPARISON OF THE SEVERAL
RELATED PROBLEMS

The classical Rayleigh-Bénard problem, which has
been studied most extensively, concerns a fluid layer
heated from below and bounded horizontally by non-
slip, isothermal surfaces. It has been customary to
present the heat-transfer results in terms of a cor-
relation of Nusselt number vs Rayleigh number,
Prandtl number effects being insignificant in the
moderate to large Prandtl number range. Both the
Nusselt number, Nu, and the Rayleigh number, Ra, are
defined on the basis of the full layer depth, D, and the
total temperature difference, AT, between the horizon-
tal boundaries, as follows;

D
Nu=22, (1)
ATD?
Ra = 9PATD" 2)
YK

Recently, a number of studies of convection in
volumetrically heated fluid layers, under various com-
binations of isothermal and adiabatic boundary con-
ditions, have appeared in the literature. In the in-
ternally heated case, the magnitude of the destabilizing

temperature difference is a function of the imposed
volumetric heating rate. Consequently, investigators
have chosen to correlate their data for average heat
flux at the boundaries in terms of upward and
downward Nusselt numbers, Nu, and Nu,, and a
modified internal Rayleigh number, Ra,, based upon
the known strength, S, of the volumetric heat source.
The relevant parameters are defined by

_ q:D

Nuy = g G
_ qoD

Nug = i )

2
Ra, = (%)(%)Da‘ (5)

As would be expected, the resulting heat-transfer
correlations for the internally heated layer do not bear
any simple relationship to those for the bottom-heated
(Rayleigh—Bénard) layer.

In the bottom-heated case, at high Rayleigh num-
bers, it is well known that the Nusselt number is
approximately proportional to the 1/3-power of the
Rayleigh number, indicating that the length para-
meter, D, has only a very weak influence upon the heat-
transfer characteristics of the fluid layer. This fact, and
other observations, has led a number of investigators
[1-5] to suggest models of the turbulent convective
flow which concentrate upon the two thermal boun-
dary layers at the horizontal surfaces, within which
nearly all of the temperature variation is confined. The
present study also makes use of the boundary-layer
concept; but, instead of proposing a new convection
model or lending support to a specific existing one, we
employ the boundary-layer-dominant aspect of the
turbulent thermal convection problem as well as
dimensional reasoning simply as a basis for comparing
the various experimental data for bottom-heated and
internally heated layers.

In the remainder of this work, we restrict our
attention, in the case of internally heated layers, to the
region adjacent to the upper boundary, within which
the temperature variation is destabilizing and the heat
flux is directed upward. The downward heat flux in
volumetrically heated layers cooled from below is
largely controlled by conduction through a relatively
stagnant fluid sublayer near the lower boundary. In
that situation, one cannot appeal to the boundary-
layer concept in the manner described in this study.

Examinations of the temperature distributions in
internally heated layers undergoing turbulent con-
vection show that, just as in the case of
Rayleigh-Bénard convection, the temperature vari-
ation in the upper portion of the layer is restricted to
a very thin boundary layer adjacent to the top surface.
This suggests that, in both the internally heated and
bottom-heated cases, the heat transfer is likely to be
determined by near-field parameters associated with
the boundary layer rather than far-field parameters
associated with the system as a whole. Hence, for the
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purpose of comparing experimental data, it is in-
appropriate to use heat-transfer correlations based
upon Nusselt numbers defined by equations (1) or (3),
in which the total layer depth, D, and the temperature
difference, AT, are far-field parameters. Instead, a more
appropriate characteristic temperature difference is
that across the thermal boundary layer. This new
temperature scale, AT*, is defined as

AT* = AT for bottom-heated layers 6)
and

AT* = T,,— T, for internally heated layers. (7)

In writing down equation (6), we are ignoring the small
core temperature reversals known to occur in laminar
regimes at low Rayleigh numbers, which are outside
our primary range of interest. Also, the possible
existence of small temperature variations in the turbu-
lent core is neglected since they are insignificant in the
Rayleigh number ranges explored so far.

Instead of using the far-field parameter, D, in the
definition of the Nusselt number, it would be more
appropriate to use a length scale depending only on
near-field parameters such as AT* and the physical
properties. Dimensional considerations show that an
implicit length scale, [*, which satisfies this require-
ment is

L 173

% _ YK
: "(gﬁar*) ' ®

The definitions given above lead to a Nusselt number,
Nu*, defined entirely in terms of near-field parameters:
. ar

Nu* = LAT* 9)
where g is the heat flux across the thermal boundary
layer at the upper boundary. If indeed, the average
surface heat flux is controlled by the boundary layers,
then Nu* should be only weakly dependent upon the
Rayleigh number, which still contains the far-field
length scale, D. Also, the heat-transfer correlations for
the Rayleigh-Bénard problem and the problem of
convection with internal heat generation should be
identical, or very nearly so. We now examine the
validity of these hypotheses by considering the pub-
lished heat-transfer data from [6-12].

First, to facilitate a comparison of the experimental
data, the Rayleigh numbers for the bottom-heated and
internally-heated layers will be transformed to a
common basis. A far-field Rayleigh number, Ra™, will
be defined by

gﬂAT+D+3
Ra* ="
a VK

(10)

where the far-field temperature difference, AT*, and
length scale, D*, are evaluated according to the
following criteria:

(a) Bottom-heated layers with isothermal boundaries
{Rayleigh—Bénard problem)
In this case, there are two similar boundary layers,
one heated from below, the other cooled from above.
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The postulate that far-field effects are negligible also
implies very small interaction between these boundary
layers (at least as regards the average heat-transfer
behavior). Thus,

AT* = 4T,—T,) = AT*, (11)
Dt =1D. (12)

N

(b} Internally heated layers with isothermal
houndaries at the same temperature
The temperature and length scales for the upper
region are

AT =T,—~T, = AT*,

Dt = (9—1>D.
do+4,

The justification for (14) is that only the volume
heating occurring in D" contributes to the upward
heat transfer ¢,. Note also that g, and ¢, are pro-
portional to N, and Nu,, which are given in [9].
Clearly, one must use the measured values for the
upward and downward heat fluxes, ¢, and g, to
obtain a precise magnitude for D*. This poses no
problem in this study, because our primary aim is not
to predict heat-transfer rates but rather to establish a
rational basis upon which to compare the existing
heat-transfer data for the two types of processes.

(13)

(14

(c) Internally heated layers with isothermal upper
boundary and adiabatic lower boundary
In this instance, the maximum temperature occurs
at the insulated lower boundary; thus,

AT = T,—T, = AT*, (15)

(16)

Note that AT* = AT* in all cases under con-
sideration and this is consistent with the physical
argument that nearly all temperature variations are
confined within the boundary layer. The above de-
finitions appear to be the most reasonable and physi-
cally meaningful for our purposes. Of course, it might
be possible to invoke qualitative arguments to arrive at
a different set of definitions, but it is unlikely that the
most appropriate set could be selected on the basis of
the experimental data alone.

The experimental data of Kulacki and Goldstein [9]
and of Ralph et al. [10] for internally heated water
layers between isothermal, equal temperature boun-
daries are now compared with data for
Rayleigh-Bénard convection taken from Chu and
Goldstein [ 6], Garon and Goldstein | 7], and Threlfall
[8]. Earlier data for bottom-heated layers have been
reviewed by the second group of investigators and are
in substantial agreement with their findings. The
comparison of the heat transfer results for the two
types of heating are shown in Fig. 1. Since the
numerical data from the experiments of Ralph et al.
[10] were not available for plotting, it was necessary to
display their correlated results, representing about
40 data points, as the single solid line. We see

D* =D.
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that, in the domain 1 x 10° < Ra* < 3 x 10°, that s, in
the turbulent or near turbulent regime, the data from
[9] for internal heating coincides quite closely with the
data from [6-8] for bottom-heating. The high Ray-
leigh number data from [ 10] for internal heating, in the
range 4 x 10° < Ra™ < 2 x 10°, also shows very good
agreement with the Rayleigh—Bénard data.

The data from Kulacki and Nagle [ 11] and Kulacki
and Emara [12] for internally heated water layers
having an insulated lower boundary and a cooled

upper boundary is shown in Fig. 2, together with the
data from Fig. 1. These last two sets of data show
considerably more scatter than that from the other
experiments. This is more likely due to experimental
uncertainties rather than to any inherent physical
process. Even so, the results for the internally heated
case with adiabatic lower boundary still are reason-
ably consistent with those for Rayleigh—Bénard
convection and for internal heating with isothermal
boundaries. It should be noted that use of Nu*, rather
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than Nu,, actually expands the vertical axis. This
results in somewhat more scatter in the data than that
found in previous plots of Nu, vs Ra; [11,12].

Statistical analyses of the data displayed in Figs. 1
and 2 also were performed.t A linear, least squares
correlation of log (Nu*) vs log(Ra™*), was employed to
obtain the unknown constants, 4 and b, in the power
law expression

Nu* = A(Ra*)". (17)

The results are given in Table 1. Clearly, the various
expressions do not differ substantially among them-
selves. As expected, Nu* is a weak function of Ra™. The
maximum variation of all of the data from a mean
value of Nu* ~ 0.15 is only of the order of + 509, over
the entire range 1x 10> < Ra* < 2 x 10'°,

Thus, the characteristic length scale is directly pro-
portional to the time-averaged boundary-layer thick-
ness. For any given temperature variation within the
boundary layer, §, is clearly proportional to k/h,
implying that

ho, (20)

= Nu*(Ra,,)!” = constant.

The fact that Nu* is nearly constant lends some
support to the validity of the boundary layer models.
On the other hand, the slight dependence of Nu* on
Ra* (see Figs. 1 and 2) may be interpreted as an
indication of the fact that the Rayleigh numbers so far
explored are still too small for these modeis to be
strictly valid, as pointed out by Long [15]. Most
recently, Cheung [ 5] derived a simple boundary layer

Table 1. Correlation equations for various data combinations

Data combinations Correlation Range of Ra*
Rayleigh-Bénard only Nu* = 0.395Rq*(~0-057 1x10%-1x 108
[6-8]
Rayleigh-Bénard plus Nu* = 0.358Rq T (70-051) 1 x103-2x 108
internal-heating with
isothermal boundaries
[6-8], [9]
Rayleigh-Bénard plus Nu* = 0.346Rq ™" (7 0-05% 1x10%-2 % 101°

all internal-heating
[6-8],[9], [11-12]
Ralph et al. [10]—
internal heating with
isothermal boundaries

Nu* = 0.173Ra* (0019

4% 10%-2x 10°

3. RELATIONSHIP TO BOUNDARY-LAYER
INSTABILITY MODELS
Howard [ 1] proposed that the average thickness of
the thermal boundary layer is governed by a repetitive
process of boundary-layer growth and draining by
departing thermals. His model was later modified and
amplified by a number of other workers [2-5]. Basi-
cally, these models postulate that there exists a critical
Rayleigh number for instability of the thermal boun-
dary layer such that the mean layer thickness attains a
critical value for a given AT*. The critical Rayleigh
number is defined as
%93
Ra, = PPAT7Oc

¢
YK

(18)

where . is the critical layer thickness. Assuming
conduction to be the dominant mode of heat transfer
within , the familiar 1/3-power dependency of Nu on
Ra follows. Note that the exact value of Ra;_depends
on the choice of definition for the boundary-layer
thickness. Since at the current stage of development,
most of these models are only semi-quantitative, we
shall not concern ourselves with published estimates of
Ra,, [13,14]. Substituting equation (8) into (18), we
obtain

I* = (Ra,) "1, (19)

tThe results from [10] were not included in the analyses
since the numerical data points were not available.

HM.T. 22/5—1

equation based on the measured heat transfer data for
Rayleigh-Béunard layers and internally heated layers
with adiabatic lower boundary. For the range of
Rayleigh numbers studied, the critical Rayleigh num-
ber Ra,, was shown to be a function of 6,/D.
Finally, it should be emphasized that [* has been
derived purely from dimensional considerations. The
usefulness of the Nu* correlation for combining the
heat-transfer data for the bottom-heated and in-
ternally heated layers clearly indicates that this choice
of a length scale for the definition of Nu* is physically
meaningful. However, whether the physics of the
model is related to the postulated thermal boundary-
layer instability phenomenon cannot be decided from
considerations of the heat-transfer data alone.

4. CONCLUSIONS

The surface heat-transfer coefficient in turbulent
convection in horizontal layers depends primarily
upon the near-field parameters, regardless of the
method of heating. Consequently, in the turbulent
convective regime, the heat-transfer characteristics of
Rayleigh-Bénard convection and convection with
internal heat generation can be derived one from the
other. This is accomplished by defining a boundary-
layer Nusselt number, Nu*, based upon the diffusive
length and temperature scales, [* and AT*, which
naturally characterize the thermal boundary layer.
The resulting power law correlation of Nu* vs Ra*
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was found to be quite effective in combining the heat-
transfer data to show the fundamental similarity
between the two convection processes which formerly
were treated as separate entities.
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GENERALISATION DES RESULTATS POUR LA CONVECTION THERMIQUE
NATURELLE, TURBULENTE ET ADJACENTE A DES SURFACES HORIZONTALES

Reésumé —On montre le caractére commun du transfert thermique ascendant dans les couches fluides
chauffées a leur base ou a coeur. Ceci est obtenu en comparant les caractéristiques de transfert thermique
a partir d’'un nombre de Nusselt modifié, défini avec une échelle de longueur implicite, contrairement au
nombre de Nusselt conventionnel qui contient la hauteur de la couche. L’échelle de longueur implicite est
obtenue par des considérations dimensionnelles et elle dépend seulement des parameétres relatifs a la
couche limite thermique adjacente 4 la surface solide. Le nombre de Nusselt modifié varie faiblement en
fonction du nombre de Rayleigh, soit un doublement pour le produit par 107 du nombre de Rayleigh. 11
est important de noter que le transfert thermique pour les couches chauffées a leur base (par exemple,
convection de Rayleigh—Benard) est a peu prés identique a celui des couches chauffées a coeur. Ceci
suggere que les facteurs extérieurs a la couche limite, tels que la méthode de chauffage, ont une faible
influence sur les coefficients de transfert thermique des deux systémes. On discute la relation entre
I’échelle de longueur implicite utilisée dans les modéles d’instabilité de couche limite par Howard et
autres. On présente aussi des formules de moindre carré des résultats combinés pour les chauffages a la
base et interne.

VERALLGEMEINERUNG VON WARMEUBERTRAGUNGSERGEBNISSEN FUR
TURBULENTE FREIE KONVEKTION NAHE HORIZONTALEN OBERFLACHEN

Zusammenfassung—Die Gleichartigkeit der nach oben gerichteten Wirmeiibertragung fir Fluid-
Schichten, die vom Boden her bzw. im Inneren beheizt werden, wird gezeigt. Dies wird durch Vergleich
ihrer Wirmeiibertragungseigenschaften auf der Basis einer modifizierten Nusselt—Zahl erreicht, welche
mit Hilfe eines impliziten LangenmaBstabs definiert ist im Gegensatz zur iiblichen Nusselt—Zahl, die mit
der gesamten Schichtdicke gebildet wird. Der implizierte LingenmaBstab wurde nach Dimensionsbetra-
chtungen abgeleitet und hdngt nur von Parametern ab, die fiir die thermische Grenzschicht nahe der
festen Oberfliche von Bedeutung sind. Es wurde festgestellt, daBl die mofifizierte Nusselt-Zahl nur eine
extrem schwache Abhingigkeit von der Rayleigh-Zahl hat und sich bei einer Verdnderung der
Rayleigh~Zahl um den Faktor 107 nur um den Faktor 2 dindert. Noch wichtiger: es wurde gezeigt, dafl
die Warmetibertragungswerte fiir vom Boden her beheizte Schichten (d.h., Rayleigh-Bénard Konvektion)
beinahe identisch sind mit denen fiir im Innern beheizte Schichten. Diese Ergebnisse deuten darauf hin,
daB Faktoren auflerhalb der Grenzschicht, wie die Methode der Beheizung, wenig Einfluf auf die
Wirmeiibergangskoeffizienten der beiden Systeme haben. Die Beziehung zwischen dem hier benutzten
impliziten LingenmaBstab fiir die Grenzschicht und der kritischen Grenzschichtdicke, welche in
Grenzschicht-Instabilitdtsmodellen von Howard und anderen benutzt wird, diskutiert. Eine Korrelation
nach der Methode der kleinsten Quadrate der kombinierten Daten fir Beheizung von der Unterseite bzw.
im Innern wird ebenfalls angegeben.
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OBOBIIEHUE PE3VJIbTATOB UCCJIEAOBAHUSA TEIJIOOBMEHA ITPH
TYPBYJIEHTHOM CBOBOJHON KOHBEKLIMM Y TOPM30OHTAJIbHBIX MMOBEPXHOCTEM

Annoraums — IToxazan obuwim# xapakTep HanpaB/ICHHOTO BBEPX NMEPEHOCA TeMN/a B CIOAX XUIKOCTH,
HarpeBaeMbIX CHHM3y H H3HYTPH. DTO 0Ka3aJioch BO3MOXHBIM OJlaroaps CpaBHEHHMIO XapaKTEPHCTHK
Tenaoo6MeHa CJ108 Ha oCHOBe MoaupuuupopanHoro umucia Hyccennra, BhIpaxeHHOro Yepes HesABHbIH
Macwitab AIHHBI, B OTAH4Me OT obbluHOro uyucia HyccennTa, KOTOpOe BKJIOYAaeT ODOLLYIO TOJILKHY
cnos. HesBHpl MaciiTab [JIHHBL BbIBEZEH M3 cOOOpaxeHHMH Da3MEPHOCTH W 3aBHCHT TOJIbKO OT
napaMeTpoB TENJIOBOIO NOFPAHHYHOTO CJI0A Ha noBepXHocTH Tea. Halineno, 4to MoaudHuupoBaHHoe
uncno HyccenbTa oueHs cnabo 3aBucHT oT yucia Penes, uamenssch Toabko B aa pa3a npu 107-kpaTHOM
u3MeHeHnH yucaa Penes. IMokasaHo, 4TO OJaHHble 1O TeMj10OOMeHY [UIfi HAarpeBaeMblX CHH3Y CJIOEB
(1. €. xoHBexkuMa Penes-Benapa) mouTH MAEHTHYHBI JAaHHBIM [UlA CJIOEB, HArpeBaeMbIX H3HYTpH. 3TO
rOBODHT O TOM, 4TO TakHe (aKTopsl, AeHCTBYIOLUME 3a MpeAeiaMH MOTPAHHYHOTO CJlofl, Kak
HANpHMeEp crnoco6 NOABOAA TEMJA, OKa3blBAIOT HE3IHAYHMTEbHOE BAMAHHE Ha KO3p(HUHEHTHI TenJio-
obMeHa AByx cuctem. IMpoBeleH aHaiu3 COOTHOIUEHHS MEXIY HCIONb3yeMbIM B HacTosule# paborte
HEABHBIM MAacliTaboM MJIMHBI MOTrPaHUYHOrO CJIOS M KPHTHYECKOH TONLIMHON MOrpaHHYHOrO CJI0A B
MOJENAX HEYCTOMYMBOCTH MOrpaHMYHBIX C10éB XoBapaa u apyrux. IlpeacraeneHa o6o6uuenHas
3aBHCHMOCTbD, NIOJTy4eHHas MyTéM 06paboTKH METONOM HaWMEHBIIHX KBAaJAPaTOB AAHHBIX [l Clly4aeB
NoJBOAA TeMJa KaK CHH3Y, TaK U H3HYTPH.
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