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Abstract-The common character of upward heat transfer in bottom-heated and internally heated fluid 
layers is demonstrated. This is accomplished by comparing their heat-transfer characteristics on the basis ofa 
modified Nusselt number, defined in terms of an implicit length scale, in contrast to the conventional Nusselt 
number which contains the total layer depth. The implicit length scale is derived from dimensional 
considerations and depends only upon parameters relevant to the thermal boundary layer adjacent to the 
solid surface. The modified Nusselt number was found to have an extremely weak dependence upon the 
Rayleigh number, the variation being only two-fold over a 107-fold variation of Rayleigh number. More 
importantly, the heat transfer data for bottom-heated layers (i.e. Rayleigh-Benard convection) were shown 
to be almost identical to those for internally heated layers. These results suggest that factors outside of the 
boundary layer, such as the method of heating, have little influence upon the heat-transfer coefficients of the 
two systems. The relationship between the implicit boundary-layer length scale used herein and the critical 
boundary-layer thickness used in the boundary-layer instability models of Howard and others is discussed. 

Least square correlation of the combined data for both bottom and internal heating is also presented. 

NOMENCLATURE 

total layer depth; 
far-field length scale ; 
gravitational acceleration ; 
heat-transfer coefficient ; 
thermal conductivity; 
near-field length scale, equation (8); 
Nusselt number; 
Nusselt number at lower boundary; 
Nusselt number at upper boundary ; 
modified (boundary-layer) Nusselt 
number, equation (9); 
heat flux ; 
heat flux at lower boundary; 
heat flux at upper boundary; 
Rayleigh number ; 
internal Rayleigh number; 
far-field Rayleigh number ; 
critical boundary-layer Rayleigh 
number ; 
volumetric heat generation rate; 
maximum temperature in internally-heated 
layer ; 
temperature difference, To - T1 ; 
temperature difference, T, - To ; 
temperature difference, T, - Tl ; 
far-field temperature difference; 
near-field temperature difference. 
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Greek symbols 

B, coefficient of thermal expansion; 

6 C) critical boundary-layer thickness; 

4 heat diffusivity ; 
V, kinematic viscosity. 

Subscripts 

0, lower surface; 

1, upper surface ; 
m, maxima. 

Superscripts 
* 

4 

near-field quantity; 
far-field quantity. 

1. INTRODUCTION 

RAYLEIGH-BBNARD convection in a horizontal fluid 
layer heated from below is the prototype for a large 
class of problems concerning fluid flow driven by an 
unstable buoyancy force distribution. Another mem- 
ber of this class, one which has received considerable 
attention in recent years, is natural convection in an 
internally heated fluid layer cooled from above and 
below. In contrast to the Rayleigh-Btnard case, 
convection in an internally heated layer is confined to 
the upper part of the layer within which the tempera- 
ture distribution is destabilizing, the lower part being 
relatively stagnant and stably stratified. Nevertheless, 
the Rayleigh-BCnard problem and the problem of 
convection induced by internal heating have certain 
basic features in common, particularly with regard to 
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the mechanisms governing the transfer of heat at the 
upper boundary of each system. For example, if the 
convection is fully turbulent, the flow in both cases is 
characterized by a nearly isothermal core together 
with a thin thermal boundary layer adjacent to the 
upper surface. In this situation, it is reasonable to 
expect that the upward heat transfer is controlled 
mainly by local parameters associated with the ther- 
mal boundary layer and that the method of heating is 
of secondary importance. Consequently, it should be 
possible to correlate the combined heat-transfer data 
for bottom-heated and internally heated layers in a 
manner that reveals the common physical basis of the 
two turbulent convection processes. Yet, to date, there 
has been no attempt to draw a quantitative com- 
parison between the heat-transfer results for the two 
problems. In fact, the heat-transfer data for internally 
heated layers is usually presented in a form which 
makes such a comparison difficult. The purpose of this 
communication is to suggest a simple method of 

displaying the combined data, a method based upon 
an important physical characteristic shared by both 
problems. In so doing, the heat-transfer correlations 
for the bottom-heated and internally heated layers are 

shown to be almost identical. 

temperature difference is a function of the imposed 
volumetric heating rate. Consequently, investigators 
have chosen to correlate their data for average heat 
flux at the boundaries in terms of upward and 
downward Nusselt numbers, NM, and Nu,, and a 
modified internal Rayleigh number, Ra,, based upon 
the known strength, S, of the volumetric heat source. 
The relevant parameters are defined by 

The emphasis throughout this work is on deducing 
the common mechanisms governing upward heat 
transfer in bottom-heated and internally heated layers 
via the existing heat-transfer data for both problems. 
Thus, the particular correlation employed here, 
though physically meaningful, is not necessarily the 
most appropriate for practical calculations. In special 
circumstances, other correlations might be more use- 
ful. In any event, it is felt that the physics of the 
turbulent convection process can be best understood 

by the method described below. 

2. COMPARISON OF THE SEVERAL 
RELATED PROBLEMS 

The classical Rayleigh-Benard problem, which has 
been studied most extensively, concerns a fluid layer 
heated from below and bounded horizontally by non- 
slip, isothermal surfaces. It has been customary to 
present the heat-transfer results in terms of a cor- 
relation of Nusselt number vs Rayleigh number, 
Prandtl number effects being insignificant in the 
moderate to large Prandtl number range. Both the 
Nusselt number, Nu, and the Rayleigh number, Ra, are 
defined on the basis of the full layer depth, D, and the 
total temperaturedifference, AT, between the horizon- 
tal boundaries, as follows; 

Nu=* 
kAT’ 

Ra = gPATD3 
(2) 

\‘K 

Recently, a number of studies of convection in 
volumetrically heated fluid layers, under various com- 
binations of isothermal and adiabatic boundary con- 
ditions, have appeared in the literature. In the in- 
ternally heated case, the magnitude of the destabilizing 

q,D 
Nu, = m’ 

Rn = @ sD2 
I i)( > VK 

2k D3. 

As would be expected, the resulting heat-transfer 
correlations for the internally heated layer do not bear 
any simple relationship to those for the bottom-heated 
(Rayleigh-Benard) layer. 

In the bottom-heated case, at high Rayleigh num- 
bers, it is well known that the Nusselt number is 
approximately proportional to the l/3-power of the 
Rayleigh number, indicating that the length para- 
meter, D, has only a very weak influence upon the heat- 
transfer characteristics of the fluid layer. This fact, and 
other observations, has led a number of investigators 
[l-5] to suggest models of the turbulent convective 
flow which concentrate upon the two thermal boun- 
dary layers at the horizontal surfaces, within which 
nearly all of the temperature variation is confined. The 
present study also makes use of the boundary-layer 
concept; but, instead of proposing a new convection 
model or lending support to a specific existing one, we 
employ the boundary-layer-dominant aspect of the 
turbulent thermal convection problem as well as 

dimensional reasoning simply as a basis for comparing 
the various experimental data for bottom-heated and 
internally heated layers. 

In the remainder of this work, we restrict our 
attention, in the case of internally heated layers, to the 
region adjacent to the upper boundary, within which 
the temperature variation is destabilizing and the heat 
flux is directed upward. The downward heat flux in 
volumetrically heated layers cooled from below is 
largely controlled by conduction through a relatively 
stagnant fluid sublayer near the lower boundary. In 
that situation, one cannot appeal to the boundary- 
layer concept in the manner described in this study. 

Examinations of the temperature distributions in 
internally heated layers undergoing turbulent con- 
vection show that, just as in the case of 
Rayleigh-Benard convection, the temperature vari- 
ation in the upper portion of the layer is restricted to 
a very thin boundary layer adjacent to the top surface. 
This suggests that, in both the internally heated and 
bottom-heated cases, the heat transfer is likely to be 
determined by near-field parameters associated with 
the boundary layer rather than far-field parameters 
associated with the system as a whole. Hence, for the 
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purpose of comparing experimental data, it is in- 

appropriate to use heat-transfer correlations based 

upon Nusselt numbers defined by equations (1) or (3), 
in which the total layer depth, I), and the temperature 
difference, AT, are far-field parameters. Instead, a more 
appropriate characteristic temperature difference is 
that across the thermal boundary layer. This new 

temperature scale, AT*, is defined as 

AT* = fAT for bottom-heated layers (6) 
and 

AT* = T, - 7; for internally heated layers. (7) 

In writing down equation (6), we are ignoring the small 
core temperature reversals known to occur in laminar 
regimes at low Rayleigh numbers, which are outside 
our primary range of interest. Also, the possible 
existence of small temperature variations in the turbu- 
lent core is neglected since they are insignificant in the 

Rayleigh number ranges explored so far. 
Instead of using the far-field parameter, D, in the 

definition of the Nusselt number, it would be more 
appropriate to use a length scale depending bnly on 
near-field parameters such as AT* and the physical 
properties. Dimensional considerations show that an 
implicit length scale, 1*, which satisfies this require- 

ment is 

The definitions given above lead to a Nusselt number, 
Nu*, defined entirely in terms of near-field parameters: 

Nu”=f&, 

where q is the heat flux across the thermal boundary 
layer at the upper boundary. If indeed, the average 
surface heat flux is controlled by the boundary layers, 
then Nu* should be only weakly dependent upon the 
Rayleigh number, which stiIl contains the far-field 
length scale. D. Also, the heat-transfer correlations for 
the Rayleigh-B~nard problem and the problem of 
convection with internal heat generation should be 
identical, or very nearly so. We now examine the 
validity of these hypotheses by considering the pub- 
lished heat-transfer data from [6-121. 

First, to facilitate a comparison of the experimental 
data, the Rayleigh numbers for the bottom-hated and 
internally-heated layers will be transformed to a 
common basis. A far-field Rayleigh number, Ru.‘, will 
be defined by 

Ru’ = 
g/3AT+Di3 

. (10) 
VK 

where the far-field temperature difference, AT+, and 
length scale, D+, are evaluated according to the 
following criteria: 

(a) Bottom-heated luyers with isothermal boundnries 

(Ro~~~e~gh-B~~urd ~~o~~ern) 
In this case, there are two similar boundary layers, 

one heated from below, the other cooled from above. 

The postulate that far-field effects are negligible also 
implies very small interaction between these boundary 
layers (at least as regards the average heat-transfer 

behavior). Thus, 

AT+ = &T,-T,)= AT*, (11) 

D+ = fD. (12) 

bo~ndories at the same te~lperl~t~~re 
The temperature and length scales for the upper 

region are 

AT+ = T,-T, = AT”, 

I)+ = 41 L). 
i > 40+g1 

(13) 

(14) 

The justification for (14) is that only the volume 
heating occurring in D-’ contributes to the upward 

heat transfer ql. Note also that q1 and qO are pro- 
portional to Nn, and Nu,, which are given in [9]. 

Clearly, one must use the measured values for the 
upward and downward heat fluxes, q1 and q,,, to 

obtain a precise magnitude for L)‘. This poses no 
problem in this study, because our primary aim is not 
to predict heat-transfer rates but rather to establish a 
rational basis upon which to compare the existing 
heat-transfer data for the two types of processes. 

(c) internally heated layers with isothermal upper 

boundary and adiabatic lower houndar) 
In this instance, the maximum temperature occurs 

at the insulated lower boundary; thus, 

AT+ = T,-T, = AT*, (13 

D+ = D. (16) 

Note that AT+ = AT* in all cases under con- 

sideration and this is consistent with the physical 
argument that nearly all temperature variations are 
confined within the boundary Layer. The above de- 
finitions appear to be the most reasonable and physi- 
cally meaningful for our purposes. Of course, it might 
be possible to invoke qualitative arguments to arrive at 
a different set of definitions, but it is unlikely that the 

most appropriate set could be selected on the basis of 
the experimental data alone. 

The experimental data ofKulacki and Goldstein [9] 
and of Ralph et a!. [lo] for internally heated water 
layers between isothermal, equal temperature boun- 
daries are now compared with data for 
RayleighhBenard convection taken from Chu and 
Goldstein [6], Garon and Goldstein [7], and Threlfall 
[8]. Earlier data for bottom-heated layers have been 
reviewed by the second group of investigators and are 
in substantial agreement with their findings. The 
comparison of the heat transfer results for the two 
types of heating are shown in Fig. 1. Since the 
numerica data from the experiments of Ralph et al. 

[lo] were not available for plotting, it was necessary to 
display their correlated results, representing about 
40 data points, as the single solid line. We see 
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LEGEND 

o = Chu & Goldstein, 1973 - Water 
s-,= Garon & Goldstein, 1973 - Water 
2 = Threlfall. 1975 - Gaseous Helium 
+ = Kulacki & Goldstein, 1972 - Water 
* = Ralph. McGreevy & Peckover. 1977 - Water 

5*lo-22 
lo2 lo3 10’ lo5 lo6 10’ lo8 10S 1o’O 10” 

Modified Rayleigh Number, Ra+ 

FIG. 1. 

= Chu & Goldstein, 1973 - Water 
- = Garon & Goldstein, 1973 - Water 

= Threlfall, 1975 - Gaseous Helium 
+ = Kulacki & Goldstein, 1972 - Water 
1 = Ralph. McGreevy & Peckover, 1977 - Water 

= Kulacki & Emara. 1975 - Water 
= Kulacki & Nagle. 1975 - Water 

Modified Rayleigh Number, Ra+ 

FIG. 2. 

that, in the domain 1 x lo3 < Ra+ < 3 x 105, that is, in 
the turbulent or near turbulent regime, the data from 
[9] for internal heating coincides quite closely with the 
data from [6-81 for bottom-heating. The high Ray- 
leigh number data from [IO] for internal heating, in the 
range 4 x lo6 < Ra+ < 2 x 109, also shows very good 
agreement with the Rayleigh-Benard data. 

The data from Kulacki and Nagle [ 1 l] and Kulacki 
and Emara [12] for internally heated water layers 
having an insulated lower boundary and a cooled 

upper boundary is shown in Fig. 2, together with the 

data from Fig. 1. These last two sets of data show 
considerably more scatter than that from the other 
experiments. This is more likely due to experimental 
uncertainties rather than to any inherent physical 
process. Even so, the results for the internally heated 
case with adiabatic lower boundary still are reason- 
ably consistent with those for Rayleigh-Benard 
convection and for internal heating with isothermal 
boundaries. It should be noted that use of Nu*, rather 
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than Nu,, actually expands the vertical axis. This 
results in somewhat more scatter in the data than that 
found in previous plots of Nu, vs Ra, [11,12]. 

Statistical analyses of the data displayed in Figs. 1 
and 2 also were performed.? A linear, least squares 
correlation of log(Nu*) vs log(Ra+), was employed to 
obtain the unknown constants, A and b, in the power 
law expression 

Nu* = A(Ru+)-~. (17) 

The results are given in Table 1. Clearly, the various 
expressions do not differ substantially among them- 
selves. As expected, Nu* is a weak function of Ra’. The 
maximum variation of all of the data from a mean 
value of Nu* N 0.15 is only of the order of k 50% over 
the entire range 1 x lo3 < Ra’ Q 2 x 10”. 

Thus, the characteristic length scale is directly pro- 
portional to the time-averaged boundary-layer thick- 
ness. For any given temperature variation within the 

boundary layer, 6, is clearly proportional to k/h, 

implying that 

y = Nu*(R~,~)“~ = constant. (20) 

The fact that NM* is nearly constant lends some 
support to the validity of the boundary layer models. 
On the other hand, the slight dependence of Nu”: on 
Ru+ (see Figs. 1 and 2) may be interpreted as an 
indication of the fact that the Rayleigh numbers so far 
explored are still too small for these models to be 

strictly valid, as pointed out by Long [15]. Most 
recently, Cheung [S] derived a simple boundary layer 

Table 1. Correlation equations for various data combinations 

Data combinations Correlation Range of Ra+ 

Rayleigh-Bknard only 

[6-81 
Rayleigh-Btnard plus 

internal-heating with 
isothermal boundaries 

II-Q [91 
Rayleigh-Bbnard plus 

all internal-heating 

[e-g], [9], [I l-121 
Ralph et crl. TlOl- 

Nu* = 0.395Ra+‘-0.057’ 1 x 103p1 x IO8 

Nu* = ().35gRa+‘-0 OS11 lx 103p2x lo8 

Nu* = 0,346&,+‘-0.055’ 1 x 103-2x 10’0 

Nu* zz ().173RU+‘-0.0’9’ 4 x 106-2x lo9 
internal heat&g with 
isothermal boundaries 

3. RELATIONSHIP TO BOUNDARY-LAYER 
INSTABILITY MODELS 

Howard [I] proposed that the average thickness of 
the thermal boundary layer is governed by a repetitive 
process of boundary-layer growth and draining by 
departing thermals. His model was later modified and 
amplified by a number of other workers [2-51. Basi- 
cally, these models postulate that there exists a critical 
Rayleigh number for instability of the thermal boun- 

dary layer such that the mean layer thickness attains a 
critical value for a given AT*. The critical Rayleigh 
number is defined as 

where S, is the critical layer thickness. Assuming 
conduction to be the dominant mode of heat transfer 
within 6,, the familiar l/3-power dependency of Nu on 
Ru follows. Note that the exact value of Ru,< depends 
on the choice of definition for the boundary-layer 
thickness. Since at the current stage of development, 
most of these models are only semi-quantitative, we 
shall not concern ourselves with published estimates of 
Ru,~ [13,14]. Substituting equation (8) into (18), we 
obtain 

I* = (Ru,~)-“~~,. (19) 

tThe results from [lo] were not included in the analyses 
since the numerical data points were not available. 

H.M.T. 22/s -I 

equation based on the measured heat transfer data for 
Rayleigh-Bknard layers and internally heated layers 
with adiabatic lower boundary. For the range of 
Rayleigh numbers studied, the critical Rayleigh num- 
ber Ru,< was shown to be a function of 6,/D. 

Finally, it should be emphasized that I* has been 
derived purely from dimensional considerations. The 
usefulness of the Nu* correlation for combining the 

heat-transfer data for the bottom-heated and in- 
ternally heated layers clearly indicates that this choice 
of a length scale for the definition of Nu* is physically 
meaningful. However, whether the physics of the 
model is related to the postulated thermal boundary- 
layer instability phenomenon cannot be decided from 
considerations of the heat-transfer data alone. 

4. CONCLUSIONS 

The surface heat-transfer coefficient in turbulent 
convection in horizontal layers depends primarily 
upon the near-field parameters, regardless of the 
method of heating. Consequently, in the turbulent 
convective regime, the heat-transfer characteristics of 
Rayleigh-Btnard convection and convection with 
internal heat generation can be derived one from the 
other. This is accomplished by defining a boundary- 
layer Nusselt number, NM*, based upon the diffusive 
length and temperature scales, 1* and AT*, which 
naturally characterize the thermal boundary layer. 
The resulting power law correlation of Nu* vs Rd 
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was found to be quite effective in combining the heat- 

transfer data to show the fundamental similarity 

between the two convection processes which formerly 

were treated as separate entities. 
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GENERALISATION DES RESULTATS POUR LA CONVECTION THERMIQUE 
NATURELLE, TURBULENTE ET ADJACENTE A DES SURFACES HORIZONTALES 

R&urn&On montre le caractere commun du transfert thermique ascendant dans les couches tluides 
chauffkes B leur base ou i coeur. Ceci est obtenu en comparant les caractiristiques de transfert thermique 
B partir d’un nombre de Nusselt modif%, dtfini avec une tchelle de longueur implicite, contrairement au 
nombre de Nusselt conventionnel qui contient la hauteur de la couche. L’tchelle de longueur implicite est 
obtenue par des considbrations dimensionnelles et elle dkpend seulement des paramitres relatifs B la 
couche limite thermique adjacente g la surface solide. Le nombre de Nusselt modifit varie faiblement en 
fonction du nombre de Rayleigh, soit un doublement pour le produit par IO’ du nombre de Rayleigh. I1 
est important de noter que le transfert thermique pour les couches chauffkes g leur base (par exemple, 
convection de RayleighbBenard) est j peu prts identique g celui des couches chauffies i coeur. Ceci 
suggkre que les facteurs exttrieurs B la couche limite, tels que la mtthode de chautTage, ont une faible 
influence sur les coefficients de transfert thermique des deux systemes. On discute la relation entre 
I’echelle de longueur implicite utiliske dans les modeles d’instabilitt de couche limite par Howard et 
autres. On prtsente aussi des formules de moindre carrb des rtsultats combints pour les chautTages g la 

base et interne. 

VERALLGEMEINERUNG VON WARMEijBERTRAGUNGSERGEBNISSEN FUR 
TURBULENTE FREIE KONVEKTION NAHE HORIZONTALEN OBERFLACHEN 

Zusammenfassung-Die Gleichartigkeit der nach oben gerichteten Warmeiibertragung fir Fluid- 
Schichten, die vom Boden her bzw. im Inneren beheizt werden, wird gezeigt. Dies wird durch Vergleich 
ihrer Warmeiibertragungseigenschaften auf der Basis einer modifmierten Nusselt-Zahl erreicht, welche 
mit Hilfe eines impliziten LiingenmaBstabs definiert ist im Gegensatz zur iiblichen Nusselt-Zahl, die mit 
der gesamten Schichtdicke gebildet wird. Der implizierte LsngenmaDstab wurde nach Dimensionsbetra- 
chtungen abgeleitet und hLngt nur von Parametern ab, die fiir die thermische Grenzschicht nahe der 
festen Oberfllche von Bedeutung sind. Es wurde festgestellt, da0 die mofifizierte Nusselt-Zahl nur eine 
extrem schwache Abhlngigkeit von der Rayleigh-Zahl hat und sich bei einer Verinderung der 
Rayleigh-Zahl urn den Faktor 10’ nur urn den Faktor 2 indert. Noch wichtiger: es wurde gezeigt, dalj 
die WIrmeiibertragungswerte fiir vom Boden her beheizte Schichten (d.h., Rayleigh-Binard Konvektion) 
beinahe identisch sind mit denen fiir im Innern beheizte Schichten. Diese Ergebnisse deuten darauf hin, 
daD Faktoren aul3erhalb der Grenzschicht, wie die Methode der Beheizung, wenig EinfluB auf die 
WTrmeiibergangskoeffizienten der beiden Systeme haben. Die Beziehung zwischen dem hier benutzten 
impliziten LgngenmaRstab fiir die Grenzschicht und der kritischen Grenzschichtdicke, welche in 
Grenzschicht-Instabilit&smodellen von Howard und anderen benutzt wird, diskutiert. Eine Korrelation 
nach der Methode der kleinsten Quadrate der kombinierten Daten fir Beheizung von der Unterseite bzw. 

im Innern wird ebenfalls angegeben. 
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0606UEHME PE3YJIbTATOB MCCJlEflOBAHMR TEI-IJIOOSMEHA l-lPM 
TYP6YJlEHTHOfi CBObOAHO~ KOHBEK~MM Y TOPM30HTAJlbHbIX I-lOBEPXHOCTEti 

AHHOTNHR- noKa3aH 06meii xapaKTep HanpaBneHHoro Baepx nepeHoca Tenna B cno~lx W~AKOCT% 

HarpeBaeMbIX CHW3y U WSHyTpW. 3TO OKa3anOCb 803MOmHbIM 6naroAapr CpaBHeHWO XapaXTepHCTm 

TenJlOO6MeHa CJIOK Ha OCHOBC MO@.U,uHpOBaHHOrO wcna HycCeJIbTa, BbIpaX(eHHOrO 'Iepe3 HeRBHbIti 

MacmTa6 AJIAHbI, B OTnwiHe OT 06bIrHOrO 'IUCna HycCenbTa, KOTOpOe BKJlKNaeT 06uy1o TOnIUmIy 

CAOR. HeKBHbIi MaCmTa6 A,I,,HbI BbIBeAeH H3 COo6pa~eHHfi pa3MepHOCTH B JaBUCWT TOJIbKO OT 

IIapaMeTpoB TennoBorOnorpawirHoro cnon HanoBepxHocre rena. HafiAeHo,4~0 tiOAH@iIlHpOBaHHOe 

'WCnO HyccenbTaOreHbcna6o 3aBWCHTOT'tHC,IaPeJIen,H3MeHKnCbTOnbKOBABa pa3anpH lo'-KpaTHOM 

H3MeHeHmi wfcna Penen. tloKa3aH0, wo AaHHbIe no Tennoo6MeHy Am HarpeBaeMbrx cHa3y cnoh 

(T.C. KOHBeKUWIl PCJIeR-6eHapa) IIO9TW HAeHTH'IHbI AaHHbIM Anll CnOiiB, HarpeBaeMbIX W3HyTpB. 3TO 

rOBOpel_ 0 TOM, qT0 TaKHe f$aKTopbI, AeficrByIouuie 38 npeAenaMt4 norpaHwiHor0 cnoK, KaK 

HanpsMep cnoco6 noABoAa Tenna, oKa3bIBaioT He3HawTenbBoe BnwHWe Ha K03@&iwieHTbI Tenno- 

06MeHa AByX CWCTCM. npOBeAeH aHaJIH3 COOTHOWeHWR MeEAy HCnOAb3yeMbIM B HaCTOnLUefi pa6oTe 

HellBHbIM MaCUlTa6OM AJIAHbI nOrpaHWIHOr0 CAOIl H Kpt,TWIeCKOii TOJIIAHHO~ nOrpaHWfHOr0 CJIOR B 

Monenflx HeycToiiresocTti norpaHsrHbIx cno& XoBapAa B Apyrsx. npeAcTaBneHa o606rueHHaa 

3aBHCAMOCTb,nOJlySeHHaR nyTeM o6pa6oTKH MeTOAOM HaWMeHbUHX KBaApaTOB AaHHbIX Anll Cny'IaeB 

IlOABOAa Tenna KaK CHUJy,TaK W WJHyTpW. 
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